2023 AP Calculus (BC) Summer Assignment (60 points)

This packet is a review of some Precalculus topics and some Calculus topics. It is to be done NEATLY and on a SEPARATE sheet of paper. Use your discretion as to whether you should use a calculator or not. When in doubt, think about whether you would have used the GC in Honors Precalc or Calc AB – that should guide you! Points will be awarded only if the correct work is shown, and that work leads to the correct answer. Have a great summer and I am looking forward to seeing you in September. ©

Parts 1 – 3:	Due	Wednesday, July 26, 2023	
Parts 4 – 6:	Due	Wednesday, August 30, 2023	

All work needs to be received by the above due date. Can be submitted on Canvas in pdf form or dropped off in Main Office (mailbox – Canonaco)

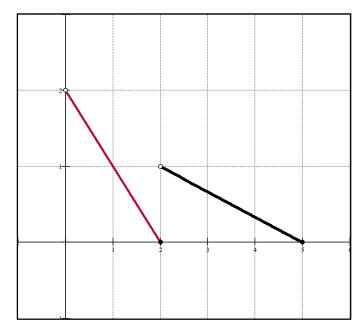
LATE work will not be accepted!

Part I: First, let's whet your appetite with a little Precalc! (10 points)

- [2] 1) For what value of k are the two lines 2x + ky = 3 and x + y = 1 (a) parallel? (b) perpendicular?
- 2) Consider the circle of radius 5 centered at (0, 0). Find an equation of the line tangent to the circle at the point (3, 4) in slope intercept form.
- 2 3) Graph the function shown below. Also indicate any key points and state the domain and range.

$$f(x) = \begin{cases} 4 - x^2, & x < 1\\ \frac{3}{2}x + \frac{3}{2}, & 1 \le x \le 3\\ x + 3, & x > 3 \end{cases}$$

4) Write a piecewise formula for the function shown. Include the domain of each piece!



Graph the function $y = 3e^{-x} - 2$ and indicate asymptote(s). State its domain, range, and intercepts.

Part II: Unlimited and Continuous! (10 points)

For #1-2 below, find the limits, if they exist.(#1-8 are 1 pt each)

1)
$$\lim_{x \to 4} \frac{2x^3 - 7x^2 - 4x}{x - 4}$$

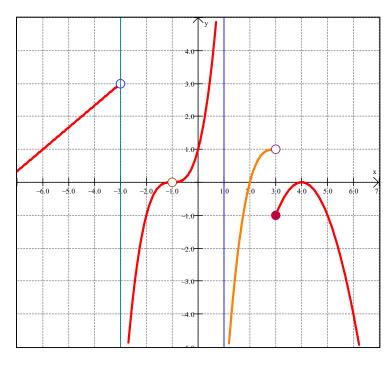
$$\lim_{x\to 9}\frac{\sqrt{x}-3}{9-x}$$

For #3-4, explain why each function is discontinuous and determine if the discontinuity is removable or non-removable.

3)
$$g(x) = \begin{cases} 2x-3, & x < 3 \\ -x+5, & x \ge 3 \end{cases}$$

4)
$$h(x) = \frac{\sqrt{x^2 - 10x + 25}}{x - 5}$$

For #5-8, determine if the following limits exist, based on the graph below of p(x). If the limits exist, state their value. Note that x = -3 and x = 1 are vertical asymptotes.



$$\lim_{x \to 1^{-}} p(x)$$

$$\lim_{x \to -3^{-}} p(x)$$

$$\lim_{x \to 3} p(x)$$

8)
$$\lim_{x \to -1} p(x)$$

2 9) Consider the function
$$f(x) = \begin{cases} x^2 + kx & x \le 5 \\ 5\sin\left(\frac{\pi}{2}x\right) & x > 5 \end{cases}$$

In order for the function to be continuous at x = 5, the value of k must be

3

Part III: Designated Deriving! (12 points)

1)
$$\lim_{h \to 0} \frac{\sec(\pi + h) - \sec(\pi)}{h} =$$

For #2-5, find the derivative.

1 2)
$$y = \ln(1 + e^x)$$

$$\boxed{1} \quad 3) \qquad y = \csc(1 + \sqrt{x})$$

$$\boxed{1} \quad 4) \qquad y = \sqrt[7]{x^3 - 4x^2}$$

$$f(x) = (x+1)e^{3x}$$

Consider the function
$$f(x) = \sqrt{x-2}$$
. On what intervals are the hypotheses of the Mean Value Theorem satisfied?

1 7) If
$$xy^2 - y^3 = x^2 - 5$$
, then $\frac{dy}{dx} = \frac{1}{2} = \frac{1}{$

The distance of a particle from its initial position is given by
$$s(t) = t - 5 + \frac{9}{(t+1)}$$
, where s is feet and t is minutes. Find the velocity at $t = 1$ minute in appropriate units.

Use the table below for #9-10.

x	f(x)	g(x)	f'(x)	g('x)
1	4	2	5	1/2
3	7	-4	$\frac{3}{2}$	-1

1 9) The value of
$$\frac{d}{dx}(f \cdot g)$$
 at $x = 3$ is

The value of
$$\frac{d}{dx}(f \cdot g)$$
 at $x = 3$ is

1 10) The value of $\frac{d}{dx}\left(\frac{f}{g}\right)$ at $x = 1$ is

In #11-12, use the table below to find the value of the first derivative of the given functions for the given value of x.

х	f(x)	g(x)	f'(x)	g('x)
1	3	2	0	3
				$\overline{4}$
2	7	-4	1	-1
			$\frac{\overline{3}}{3}$	

11)
$$\frac{d}{dx}[f(x)]^2$$
 at $x = 2$ is

1 12)
$$\frac{d}{dx} f(g(x)) \text{ at } x = 1 \text{ is}$$

Part IV: Derived and Applied! (8 points)

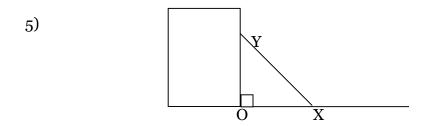
For #1-3, find all critical values, intervals of increasing and decreasing, any local extrema, points of inflection, and all intervals where the graph is concave up and concave down.

1)
$$f(x) = \frac{x^2 - 5}{x + 4}$$

$$y = 3x^3 - 2x^2 + 6x - 2$$

1 3) The graph of the function
$$y = x^5 - x^2 + \sin x$$
 changes concavity at $x = x^5 - x^2 + \sin x$

$$1$$
 4) For what value of x is the slope of the tangent line to $y = x^7 + \frac{3}{x}$ undefined?



A ladder 15 feet long is leaning against a building so that end X is on level ground and end Y is on the wall as shown in the figure. X is moved away from the building at a constant rate of $\frac{1}{2}$ foot per second.

- [2] (a) Find the rate in feet per second at which the length OY is changing when X is 9 feet from the building.
- [2] (b) Find the rate of change in square feet per second of the area of triangle XOY when X is 9 feet from the building.

Part V: Integral to Your Success! (12 points)

1)
$$\int_{-8}^{-1} \frac{x - x^2}{2\sqrt[3]{x}} dx$$

$$\boxed{1} \quad 3) \qquad \frac{d}{dx} \int_{1}^{x} \sqrt[4]{t} \ dt$$

$$\boxed{1} \quad 4) \qquad \int \frac{x^3}{\sqrt{1+x^4}} dx$$

$$\boxed{1} \quad 5) \qquad \int \frac{\csc^2 x}{\cot^3 x} dx$$

1 8) What is the average value of
$$y = x^3 \sqrt{x^4 + 9}$$
 on the interval [0, 2]?

1 9)	The function f is continuous on the closed interval $[1, 9]$ and has the values given in the table. Using the subintervals $[1, 3]$, $[3, 6]$, and $[6, 9]$, what is the value of the trapezoidal
	approximation of $\int_{1}^{9} f(x)dx$?

x	1	3	6	9
f(x)	15	25	40	30

10) The table below provides data points for the continuous function y = h(x).

х	0	2	4	6	8	10
h(x)	9	25	30	16	25	32

Use a right Riemann sum with 5 subdivisions to approximate the area under the curve of y = h(x) on the interval [0, 10].

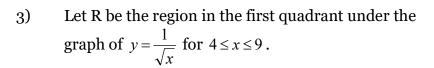
- 11) A particle moves along the *x*-axis so that, at any time $t \ge 0$, its acceleration is given by a(t) = 6t + 6. At time t = 0, the velocity of the particle is -9, and its position is -27.
 - (a) Find v(t), the velocity of the particle at any time $t \ge 0$.
 - $\lfloor 1 \rfloor$ (b) For what values of $t \ge 0$ is the particle moving to the right?
 - (c) Find x(t), the position of the particle at any time $t \ge 0$.

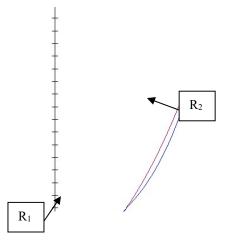
Part VI: Apply Those Integrals! (8 points)

For #1-2, find the general solution to the given differential equation.

2 1) $\frac{dy}{dx} = y \sin x$

- 2) The shaded regions, R_1 and R_2 shown above are enclosed by the graphs of $f(x) = x^2$ and $g(x) = 2^x$.
 - [1] (a) Find the x- and y-coordinates of the three points of intersection of the graphs of f and g.
 - Without using absolute value, set up an expression involving one or more integrals that gives the total area enclosed by the graphs of f and g. Do not evaluate.





- (a) Find the area of R.
- (b) Find the volume of the solid whose base is the region R and whose cross sections cut by planes perpendicular to the *x*-axis are squares.